Advertisements
Advertisements
Question
Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.
Options
12
13
14
15
Solution
Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to 14.
Explanation:
`(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`
It is linear differential equation.
⇒ `(dy)/(dx) + (2x)/(x - 1)y = 1/((x - 1)^2`
Comparing above equation with `(dy)/(dx) + py` = Q, we get
P = `(2x)/(x - 1)y` and Q = `1/(x - 1)^2`
Now, I.F. = `e^(intP.dx)`
⇒ I.F. = `e^(int(2x)/(x - 1)dx`
⇒ I.F. = `e^(int(2 + 2/(x - 1))dx`
⇒ I.F. = `e^(2x + 2 "In" |x - 1|)`
⇒ I.F. = `e^(2x).e^("In"(x - 1)^2`
⇒ I.F. = `(x - 1)^2e^(2x)`
So, the solution of a given differential equation is given by
y(I.F.) = `int"Q".("I"."F".)dx`
⇒ ye2x(x – 1)2 = `int1/(x - 1)^2 e^(2x) (x - 1)^2dx`
⇒ ye2x(x – 1)2 = `inte^(2x)dx`
⇒ ye2x(x – 1)2 = `e^(2x)/2 + "C"`
Put x = 2 in above equation, we get
y(2)e4 = `e^4/2 + "C"`
⇒ C = `(1 + e^4)/(2e^4).e^4 - e^4/2` ......`{∵ y(2) = (1 + e^4)/(2e^4)}`
⇒ C = `1/2`
⇒ ye2x(x – 1)2 = `e^(2x)/2 + 1/2`
Put x = 3 in above equation, we get
y(3)e64 = `e^6/2 + 1/2`
⇒ `(e^α + 1)/(βe^α) = (e^6 + 1)/(8e^6)`
⇒ α = 6, β = 8
∴ α + β = 14