Advertisements
Advertisements
Question
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
Options
`npi + (-1)^n pi/4`
`(-1)^n pi/4 - pi/3`
`npi + pi/4 - pi/3`
`npi + (-1)^n pi/4 - pi/3`
MCQ
Fill in the Blanks
Solution
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is `underline(npi + (-1)^n pi/4 - pi/3)`.
Explanation:
`sqrt3costheta + sintheta = sqrt2`
D.ividing both sides by `sqrt((sqrt3)^2 + 1^2) = 2`, we get
`sqrt3/2 costheta + 1/2 sintheta = sqrt2/2`
⇒ sinθ cos`pi/3` + cosθ sin`pi/3 = 1/sqrt2`
⇒ `sin(theta + pi/3) = sin(pi/4)`
⇒ `theta + pi/3 = npi + (-1)^n pi/4`
⇒ `theta = npi + (-1)^n pi/4 - pi/3`
shaalaa.com
Is there an error in this question or solution?