Advertisements
Advertisements
Question
lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______
Options
2
5
`5/2`
e
MCQ
Fill in the Blanks
Solution
lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is `underline(5/2)`.
Explanation:
`lim_{x→1} (2f(x) - 5)/(2(x^2 - 1)) = e`
⇒ `lim_{x→1} (f(x) - 5/2)/((x^2 - 1)) = e`
⇒ `lim_{x→1}f(x) - lim_{x→1}5/2 = elim_{x→1}(x^2 - 1)`
⇒ `lim_{x→1}f(x) - 5/2 = e(0)`
⇒ `lim_{x→1}f(x) - 5/2 = 0`
⇒ `lim_{x→1}f(x) = 5/2`
shaalaa.com
Limits of Exponential and Logarithmic Functions
Is there an error in this question or solution?