Advertisements
Advertisements
Question
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
Options
0
1
2
None of these
Solution
2
Explanation:
Let `l_1 : ax + by + p` = 0
`l_2 : x cos alpha + y sin alpha = p`
`l_3 : x sin alpha - y cos alpha` = 0
⇒ It is given that lines `l_1` and `l_2` are inclined at an angle of `pi/4`,
`tan theta = |(m_1 - m_2)/(1 + m_1m_2)|`
Here, `theta = pi/4 , m_1 = (-a)/b, m_2 = (- cos alpha)/(sin alpha)`
`tan pi/4 = 1 = |(- a/b + cosalpha/sinalpha)/(1 + a/b xx cosalpha/sinalpha)|`
`|(b cos alpha - a sin alpha)/(b sin alpha)| = |(b sin alpha + a cos alpha)/(b sin alpha)|`
∴ `|b cos alpha - a sin alpha| = |b sin alpha + a cos alpha|`
`b cos alpha - a sin alpha = +- (b sin alpha + a cos alpha)`
Squaring both the sides, we get
`b^2cos^2alpha + a^2sin^2alpha - 2ab sin alpha cos alpha`
= `b^2sin^2 alpha + a^2cos^2 alpha + 2ab sin alpha cos alpha` ......(i)
⇒ As it is given that, line `l_3` is concurrent with the line `l_1` and `l_2`. Then,
`l_2 : x cos alpha + y sin alpha = P` and `l_3 : x sin alpha - y cos alpha` = 0
`x sin alpha = y cos alpha`
`y = (x sin alpha)/(cos alpha)`
Now substitute the value of y in line `l_2`,
`x cos alpha + (x sin alpha)/(cos alpha) xx sin alpha = P`
`x cos^2alpha + x sin^2alpha = P cos alpha`
`x (cos^2alpha + sin^2alpha) = P cos alpha`
∴ `x = P cos alpha`
Similarly, we get `y = P cos alpha`
We know that, line `l_3` is concurrent with `l_1` also.
∴ `ax + by + P = 0 ⇒ aP cos alpha + bP sin alpha + P` = 0
`a cos alpha + b sin alpha + 1` = 0
`a cos alpha + b sin alpha = -1`
Squaring the above equation, we get
`a^2cos^2alpha + b^2sin^2alpha - 2ab sin alpha cos alpha` = 1 .....(ii)
From equation (i) and (ii),
`a^2sin^2alpha + b^2cos^2 alpha - 2ab sin alpha cos alpha` = 1 ......(iii)
⇒ Now, adding equation (ii) and (iii), we get
`a^2sin^2alpha + b^2cos^2alpha + a^2cos^2alpha + b^2sin^2alpha` = 1 + 1
`a^2(sin^2 alpha + cos^2 alpha) + b^2 (sin^2 alpha + cos^2 alpha)` = 2
∴ `a^2 + b^2` = 2