English

Lf y = 2x2x...∞, then x(1 - y logx logy)dydx = ______ -

Advertisements
Advertisements

Question

lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  

Options

  • y2 logy 

  • y log y

  • `y^2/logy`

  • `y/logy`

MCQ
Fill in the Blanks

Solution

lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = y2 logy

Explanation:

y = `2^{x^y}`

∴ log y = xy log 2

∴ log(log y) = y logx + log(log 2)

Differentiating both sides w.r.t.x, we get

`1/logy . 1/y . dy/dx = y/x + dy/dx logx`

⇒ `(1/(ylogy) - logx)dy/dx = y/x`

⇒ x(1 - y logx logy) `dy/dx = y^2 logy`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×