Advertisements
Advertisements
Question
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
Options
`e/4`
`4/e`
1
`e/2`
MCQ
Fill in the Blanks
Solution
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to `underlinebb(4/e)`.
Explanation:
Taking logarithm both sides we get,
logs = `2/n^2log(1 + 1^2/n^2) + 4/n^2log(1 + 2^2/n^2) + ..... + (2n)/n^2log(1 + n^2/n^2)`
= `sum_(r=1)^n(2r)/n^2(1 + r^2/n^2) = int_0^1 2xlog(1 + x^2)dx`
Put 1 + x2 = t
⇒ 2xdx = dt
= `int_1^2logtdt = [tlogt - t]_1^2` = 2log2 – 2 + 1
logs = log4 – loge
⇒ s = `4/e`
shaalaa.com
Is there an error in this question or solution?