Advertisements
Advertisements
Question
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.
Options
`1/2`
1
2
–2
Solution
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to 2.
Explanation:
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]`
S = `lim_(n rightarrow ∞) sum_(r = 1)^(2^n - 1) 1/2^n[1/sqrt(1 - r/2^n)]`
Let `r/2^n` = x and `1/2^n` = dx
when r = 1 and n `rightarrow` ∞ then x `rightarrow` 0
When r = 2n – 1 and n `rightarrow` ∞ then
x = `lim_(n rightarrow ∞) (2^n - 1)/2^n = lim_(n rightarrow ∞) 1 - 1/2^n` = 0
∴ S = `int_0^1 1/sqrt(1 - x)dx`
= `-2[sqrt(1 - x)]_0^1`
= 2