English

Limn→∞[1n2+1+2n2+1+3n2+1+....+nn2+1] = ______ -

Advertisements
Advertisements

Question

`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = ______ 

Options

  • 1

  • 2

  • `1/2`

  • 0

MCQ
Fill in the Blanks

Solution

`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = `underline(1/2)`

Explanation:

Given limit = `lim_{n→∞} (1 + 2 + 3 + ... + n)/(1 + n^2)`

= `lim_{n→∞} (sumn)/(1 + n^2)`

= `lim_{n→∞} 1/2 (n(n + 1))/(1 + n^2)`

= `lim_{n→∞} 1/2 ((1 + 1/n))/((1/n^2 + 1))`

= `1/2. 1 = 1/2`

shaalaa.com
Substitution Method
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×