Advertisements
Advertisements
Question
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
Options
`z/(2^(11/3))`
`1/(2^(23/3 . z))`
`2^(21/3) z`
None of these
MCQ
Solution
`1/(2^(23/3 . z))`
Explanation:
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4`
= `lim_(x -> 0) (xroot(3)(2xz - x^2))/(root(3)(x)root(3)(8z - 4x) + root(3)(8z) root(3)(x))^4`
= `lim_(x -> 0) (x^(4/3) root(3)(2z - z))/(x^(4/3) [root(3)(8z - 4x) + root(3)(8z)]^4)`
= `(root(3)(2z))/([2 root(3)(8z)]^4)`
= `1/(2^(23/3).z)`
shaalaa.com
Is there an error in this question or solution?