English

∫ log x · (log x + 2) dx = ? -

Advertisements
Advertisements

Question

∫ log x · (log x + 2) dx = ?

Options

  • x (log x)2 + c

  • x log x + c

  • ex (log x)2 + c

  • (log x)2 + c

MCQ

Solution

x (log x)2 + c

Explanation:

We have,

I = ∫ log x · (log x + 2) dx

I = ∫ (log x)2 dx + ∫ 2 log x dx

I = `(log x)^2 int "dx" - int (("d"(log x)^2)/"dx" int "dx") "dx" + int 2 log x "d"x + "C"`

I = `x (log x)^2 - int (2 log x)/x * x  "dx" + int 2 log x "dx" + "C"`

I = x (log x)2 - ∫ 2 log x dx + ∫ 2 log x dx + C

I = (x log x)2 + C

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×