English

∫(logx)2dx equals ______. -

Advertisements
Advertisements

Question

`int(logx)^2dx` equals ______.

Options

  • (x logx)2 – 2x logx + 2x + c

  • x(logx)2 – 2x logx + 2x + c

  • x(logx)2 + 2x logx + 2x + c

  • x(logx)2 + 2x logx – 2x + c

MCQ
Fill in the Blanks

Solution

`int(logx)^2dx` equals `underlinebb(x(log x)^2 - 2x log x + 2x + c)`.

Explanation:

I = `int1.(logx)^2dx`  ...[Using by parts]

Take 1 as the second function then,

I = `x(logx)^2 - intx.(2logx)/xdx`

= `x(logx)^2 - 2intlogxdx`

Again by parts

I = `x(logx)^2 - 2[xlogx - intx. 1/x dx]`

= x(logx)2 – 2x logx + 2x + c

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×