Advertisements
Advertisements
Question
Making use of the cube root table, find the cube root
34.2 .
Solution
The number 34.2 could be written as \[\frac{342}{10}\]
Now
\[\sqrt[3]{34 . 2} = \sqrt[3]{\frac{342}{10}} = \frac{\sqrt[3]{342}}{\sqrt[3]{10}}\]
Also
\[340 < 342 < 350 \Rightarrow \sqrt[3]{340} < \sqrt[3]{342} < \sqrt[3]{350}\]
From the cube root table, we have: \[\sqrt[3]{340} = 6 . 980 and \sqrt[3]{350} = 7 . 047\]
For the difference (350 - 340), i.e., 10, the difference in values
\[= 7 . 047 - 6 . 980 = 0 . 067\] .
∴ For the difference (342 -340), i.e., 2, the difference in values
\[= \frac{0 . 067}{10} \times 2 = 0 . 013\] (upto three decimal places)
Thus, the required cube root is 3.246.
APPEARS IN
RELATED QUESTIONS
\[\sqrt[3]{. . .} = \sqrt[3]{4} \times \sqrt[3]{5} \times \sqrt[3]{6}\]
\[\sqrt[3]{\frac{27}{125}} = \frac{. . .}{5}\]
\[\sqrt[3]{\frac{512}{. . .}} = \frac{8}{13}\]
Evaluate:
Find The cube root of the numbers 3048625, 20346417, 210644875, 57066625 using the fact that 3048625 = 3375 × 729 .
Making use of the cube root table, find the cube root
0.86 .
Find the smallest number by which 26244 may be divided so that the quotient is a perfect cube.
Find the cube root of 8000.
Find `root(3)(0.125)`.
The cube root of 0.000004913 is ___________