Advertisements
Advertisements
Question
P and Q are points on sides AB and AC respectively of ∆ABC. If AP = 3 cm, PB = 6cm. AQ = 5 cm and QC = 10 cm, show that BC = 3PQ.
Sum
Solution
We have,
AB = AP + PB = (3 + 6) cm = 9 cm and, AC = AQ + QC = (5 + 10) cm = 15 cm.
`\therefore \frac{AP}{AB}=\frac{3}{9}=\frac{1}{3}\text{ and }\frac{AQ}{AC}=\frac{5}{15}=\frac{1}{3}`
`\Rightarrow \frac{AP}{AB}=\frac{AQ}{AC}`
Thus, in triangles APQ and ABC, we have
`\frac{AP}{AB}=\frac{AQ}{AC} and ∠A = ∠A `
Therefore, by SAS-criterion of similarity, we have
∆APQ ~ ∆ABC
`\Rightarrow \frac{AP}{AB}=\frac{PQ}{BC}=\frac{AQ}{AC}`
`\Rightarrow \frac{PQ}{BC}=\frac{AQ}{AC}\Rightarrow\frac{PQ}{BC}=\frac{5}{15}`
`\Rightarrow \frac{PQ}{BC}=\frac{1}{3}`
⇒ BC = 3PQ
shaalaa.com
Is there an error in this question or solution?