Advertisements
Advertisements
Question
पिछले 200 कार्य दिवसों में, किसी मशीन द्वारा निर्मित खराब पुर्जों की संख्या निम्नलिखित सारणी में दी गई है :
खराब पुर्जों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
दिन | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
इसकी प्रायिकता निर्धारित कीजिए कि कल के उत्पादन में
- कोई खराब पुर्जा नहीं होगा।
- न्यूनतम एक खराब पुर्जा होगा।
- 5 से अधिक खराब पुर्जे नहीं होंगे।
- 13 से अधिक खराब पुर्जे होंगे।
Solution
कार्य दिवसों की कुल संख्या, n(S) = 200
i. उन दिनों की संख्या जिनमें कोई भी पुर्जा खराब नहीं है,
n(E1) = 50
संभावना है कि कोई दोषपूर्ण भाग = `(n(E_1))/(n(S))`
= `50/200`
= `1/4`
= 0.25
ii. दिनों की संख्या जिसमें कम से कम एक खराब पुर्जा है,
n(E2) = 32 + 22 + 18 + 12 + 12 + 10 + 10 + 10 + 8 + 6 + 6 + 2 + 2 = 150
∴ संभावना है कि कम से कम एक दोषपूर्ण भाग = `(n(E_2))/(n(S))`
= `150/200`
= `3/4`
= 0.75
iii. उन दिनों की संख्या जिनमें 5 से अधिक खराब पुर्जे नहीं हैं,
n(E3) = 50 + 32 + 22 + 18 + 12 + 12 = 146
∴ 5 से अधिक पुर्जों के खराब न होने की प्रायिकता
= `(n(E_3))/(n(S))`
= `146/200`
= 0.73
iv. उन दिनों की संख्या जिनमें 13 से अधिक खराब पुर्जे हैं,
n(E4) = 0
= `(n(E_4))/(n(S))`
= `0/200`
= 0
अतः, प्रायिकता कि 13 से अधिक दोषपूर्ण पुर्जे 0 हैं।
APPEARS IN
RELATED QUESTIONS
यदि कोई घटना घटित नहीं हो सकती है, तो उसकी प्रायिकता ______ है।
किसी विशेष घटना के घटित होने की प्रायिकता प्रतिशत के रूप में व्यक्त करने पर, निम्नलिखित कभी नहीं हो सकती ______।
52 ताशों की एक गड्डी में से एक ताश निकाला जाता है। इसके लाल रंग का मुख कार्ड होने की प्रायिकता ______ है।
बच्चों के एक खेल में, 8 त्रिभुज हैं, जिसमें से 3 नीले और शेष लाल हैं। साथ ही, इस खेल में 10 वर्ग हैं जिसमें से 6 नीले हैं और शेष लाल हैं। इनमें से एक टुकड़ा यादृच्छिक रूप से खो जाता है। इस टुकड़े के निम्नलिखित होने की प्रायिकता ज्ञात कीजिए -
नीले रंग का वर्ग
फुटबाल के एक खिलाड़ी द्वारा 10 मैचों में किए गए गोलों की संख्या निम्नलिखित है :
1, 3, 2, 5, 8, 6, 1, 4, 7, 9
क्योंकि मैचों की संख्या 10 (एक सम संख्या) है, इसलिए
`"माध्यक" = (5^ "वाँ" "प्रेक्षण" +6^"वाँ" "प्रेक्षण")/2 = (8+ 6)/2 = 7`
क्या यह सही उत्तर है और क्यों?
जैसे-जैसे एक सिक्के के उछालों की संख्या बढ़ती जाती है, चितों की संख्या और पटों की संख्या का अनुपात `1/2` हो जाता है। क्या यह सही है? यदि नहीं, तो इसे सही रूप में लिखिए।
दो पासों को एक साथ 500 बार फेंका जाता है। प्रत्येक बार उनके ऊपर आई संख्याओं के योग को ज्ञात करके नीचे दी गई सारणी के अनुसार रिकार्ड किया गया है :
योग | बारंबारता |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
यदि इन पासों को एक बार पुनः फेंका जाए तो निम्नलिखित योग ज्ञात करने की क्या प्रायकिता है?
10 से अधिक
पैक किए गए प्रत्येक डिब्बे में बल्बों की संख्या 40 है। इनमें से 700 डिब्बों के खराब बल्बों की संख्या ज्ञात करने के लिए जाँच की गई तथा इसके परिणाम निम्नलिखित सारणी में दिए गए हैं :
खराब बल्बों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 से अधिक |
बारंबारता | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
इन डिब्बों में से एक डिब्बा यादृच्छिक रूप से चुना जाता है। इसकी क्या प्रायिकता है कि इस डिब्बे में
- कोई बल्ब खराब नहीं होगा?
- खराब बल्बों की संख्या 2 से 6 तक होगी?
- 4 से कम खराब बल्ब होंगे?
पैक किए गए प्रत्येक डिब्बे में बल्बों की संख्या 40 है। इनमें से 700 डिब्बों के खराब बल्बों की संख्या ज्ञात करने के लिए जाँच की गई तथा इसके परिणाम निम्नलिखित सारणी में दिए गए हैं :
खराब बल्बों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 से अधिक |
बारंबारता | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
इन डिब्बों में से एक डिब्बा यादृच्छिक रूप से चुना जाता है। इसकी क्या प्रायिकता है कि इस डिब्बे में 4 से कम खराब बल्ब होंगे?
पिछले 200 कार्य दिवसों में, किसी मशीन द्वारा निर्मित खराब पुर्जों की संख्या निम्नलिखित सारणी में दी गई है :
खराब पुर्जों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
दिन | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
इसकी प्रायिकता निर्धारित कीजिए कि कल के उत्पादन में 5 से अधिक खराब पुर्जे नहीं होंगे।