English
Karnataka Board PUCPUC Science Class 11

Pick the Correct Options. (A) Magnetic Field is Produced by Electric Charges Only (B) Magnetic Poles Are Only Mathematical Assumptions Having No Real Existence - Physics

Advertisements
Advertisements

Question

Pick the correct options.

(a) Magnetic field is produced by electric charges only
(b) Magnetic poles are only mathematical assumptions having no real existence
(b) A north pole is equivalent to a clockwise current and a south pole is equivalent to an anticlockwise current.
(d) A bar magnet is equivalent to a long, straight current.

Answer in Brief

Solution

(a) Magnetic field is produced by electric charges only.
(b) Magnetic poles are only mathematical assumptions having no real existence.

Justification of (a) and (b):

Investigators and experimenters have failed to find any sign of magnetic monopoles. So, we can assume that magnetic monopoles are only a mathematical assumption.
A magnetic field is produced by the motion of an electric charge only. In paramagnets or ferromagnets, the motion of an electron (charge) and the alignment of domains (bunch of charges with particular alignment) create paramagnetism and ferromagnetism, respectively.
Therefore, the only cause behind the magnetic field is the motion of an electric charge.

Denial of (c):

The north pole is equivalent to an anticlockwise current and the south pole is equivalent to a clockwise current.

Denial of (d):

A bar magnet is not equivalent to a long, straight current because the distribution and orientation of magnetic field lines do not resemble each other.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Permanent Magnets - MCQ [Page 277]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 14 Permanent Magnets
MCQ | Q 1 | Page 277

RELATED QUESTIONS

A circular coil of 300 turns and average area 5 * 10-3m2 carries a current of 15A. Calculate the magnitude of magnetic moment associated with the coil.


A charge 'q' is moved from a point A above a dipole of dipole moment 'p' to a point B below the dipole in equatorial plane without acceleration. Find the work done in the process.


Show that the orbital magnetic dipole moment of a revolving electron is `(eVr)/2`


An electron in an atom revolves around the nucleus in an orbit of radius 0.53 Å. If the frequency of revolution of an electron is 9 x109 MHz, calculate the orbital  angular momentum

[Given : Charge on an electron = 1.6 x 10–19 C; Gyromagnetic ratio = 8.8 x 1010 C/kg; π = 3.142]


Draw the diagrams showing the dipole moments in paramagnetic substance when external magnetic field is (a) absent (b) strong


The electron in the hydrogen atom is moving with a speed of 2.3x106 m/s in an orbit of radius 0.53 Å. Calculate the period of revolution of the electron. (Π = 3.142)


A circular loop carrying a current is replaced by an equivalent magnetic dipole. A point on the axis of the loop is in 


Let r be the distance of a point on the axis of a magnetic dipole from its centre. The magnetic field at such a point is proportional to


Two short magnets of equal dipole moments M are fastened perpendicularly at their centre in the Figure . The magnitude of the magnetic field at a distance d from the centre on the bisector of the right angle is


A horizontal circular loop carries a current that looks clockwise when viewed from above. It is replaced by an equivalent magnetic dipole consisting of a south pole S and a north pole N.

(a) The line SN should be along a diameter of the loop.
(b) The line SN should be perpendicular to the plane of the loop
(c) The south pole should be slow the loop
(d) The north pole should be below the loop


The magnetic moment vectors µs and µl associated with the intrinsic spin angular momentum S and orbital angular momentum l, respectively, of an electron are predicted by quantum theory (and verified experimentally to a high accuracy) to be given by:

µs = –(e/m) S,

µl = –(e/2m) l

Which of these relations is in accordance with the result expected classically? Outline the derivation of the classical result.


When a current in a circular loop is equivalently replaced by a magnetic dipole ______.

The orbital speed of an electron orbiting around a nucleus in a circular orbit of radius 50 pm is 2.2 × 106 ms−1. Then the magnetic dipole moment of an electron is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×