Advertisements
Advertisements
Question
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Sum
Solution
`int_0^(2a) f(x)dx = int_0^a f(x) dx + int_0^a f(2a - x)dx`
R.H.S. : `int_0^a f(x)dx + int_0^a f(2a - x)dx`
= I1 + I2 ...(i)
Consider I2 = `int_0^a f(2a - x)dx`
Put 2a – x = t
i.e. x = 2a – t
∴ –1 dx = 1 dt
`\implies` dx = – dt
As x varies from 0 to 2a, t varies from 2a to 0
I = `int_(2a)^a f(t)(-dt)`
= `-int_(2a)^a f(t)dt`
= `int_0^(2a) f(t)dt` ...`(int_a^b f(x)dx = -int_b^a f(x)dx)`
= `int_0^(2a) f(x)dx` ...`(int_a^b f(x)dx = int_a^b f(t)dt)`
∴ `int_0^a f(x)dx = int_0^(2a) f(x)dx`
From equation (i)
`int_0^a f(x)dx + int_0^a f(2a - x)dx = int_0^a f(x)dx + int_0^(2a) f(x)dx`
= `int_0^(2a) f(x)dx` : L.H.S.
Thus, `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
shaalaa.com
Fundamental Theorem of Integral Calculus
Is there an error in this question or solution?