English

Prove that ∫02af(x)dx=∫0a[f(x) +f(2a-x)]dx -

Advertisements
Advertisements

Question

Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`

Sum

Solution

`int_0^(2a) f(x)dx = int_0^a f(x)  dx + int_0^a f(2a - x)dx`

R.H.S. : `int_0^a f(x)dx + int_0^a f(2a - x)dx`

= I1 + I2    ...(i)

Consider I2 = `int_0^a f(2a - x)dx`

Put 2a – x = t

i.e. x = 2a – t

∴ –1 dx = 1 dt

`\implies` dx = – dt

As x varies from 0 to 2a, t varies from 2a to 0

I = `int_(2a)^a f(t)(-dt)`

= `-int_(2a)^a f(t)dt`

= `int_0^(2a) f(t)dt`   ...`(int_a^b f(x)dx = -int_b^a f(x)dx)`

= `int_0^(2a) f(x)dx`  ...`(int_a^b f(x)dx = int_a^b f(t)dt)`

∴ `int_0^a f(x)dx = int_0^(2a) f(x)dx`

From equation (i)

`int_0^a f(x)dx + int_0^a f(2a - x)dx = int_0^a f(x)dx + int_0^(2a) f(x)dx`

= `int_0^(2a) f(x)dx` : L.H.S.

Thus, `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×