Advertisements
Advertisements
Question
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Sum
Solution
Let I = `int (dx)/sqrt(x^2 - a^2)`
Put x = a sec θ
∴ dx = a sec θ tan θ dθ and sec θ = `x/a`
Also, `sqrt(x^2 - a^2)`
= `sqrt(a^2 sec^2 θ - a^2)`
= `asqrt(sec^2θ - 1)`
= a tan θ
∴ tan θ = `sqrt(x^2 - a^2)/a`
∴ I = `int(asecθtanθ)/(atanθ) dθ = int secθ dθ`
= `log|secθ + tanθ| + c_1`
= `log|x/a + sqrt(x^2 - a^2)/a| + c_1`
= `log|(x + sqrt(x^2 - a^2))/a| + c_1`
= `log|x + sqrt(x^2 - a^2)| - log a + c_1`
= `log|x + sqrt(x^2 - a^2) + c`, where c = – log a + c1
∴ `int 1/sqrt(x^2 - a^2) dx = log|x + sqrt(x^2 - a^2)| + c`.
shaalaa.com
Is there an error in this question or solution?