Advertisements
Advertisements
Question
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
Solution
Let tan–1x = α and tan–1y = β
∴ tan α = x where – π/2 < α π/2
and tan β = y where – π/2 < β < π/2
Since x > 0, y > 0, therefore 0 < α < π/2 and 0 < β < π/2
Since x > `0, y > 0 and xy > 1, (x + y)/(1 - xy) < 0`
∴ tan (α + β) = `(tan α + tanβ)/(1 - tan α . tanβ)`
∴ tan (α + β) = `(x + y)/(1 - xy) < 0`
Now, 0 < α < π/2, 0 < β < π/2
∴ 0 < α + β < π
But tan (α + β) < 0
∴ π/2 < (α + β) < π ...[∵ tan θ < 0 in the second quadrant]
But inverse of tangent does not exist, if π/2 < (α + β) < π
∴ π/2 – π < (α + β) – π < π – π
∴ – π/2 < (α + β) – π < 0
Consider, tan (α + β – π) = – tan [π – (α + β)] = tan (α + β)
∴ tan (α + β – π) = `(x + y)/(1 - xy)`
∴ `α + β - π = tan^-1((x + y)/(1 - xy))`
∴ `α + β = π + tan^-1((x + y)/(1 - xy))`
∴ tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`.