Advertisements
Advertisements
Question
Q 5
Sum
Solution
Let the number be a, ar and ar2.
⇒ a + ar + ar2 = 52 ...(i)
And, (a x ar) + (ar x ar2) + (ar2 x a) = 624
⇒ a2r + a2r3 + a2r2 = 624
⇒ ar(a + ar2 + ar) = 624
⇒ ar x 52 = 624 .....[From (i)]
⇒ ar = 12
⇒ `a=12/r`
Substituting in (i), we get
`12/r+12/rxxr+12/rxxr^2=52`
⇒ `12/r+12+12r=52`
⇒ `(12+12r+12r^2)/r=52`
⇒ 12 + 12r + 12r2 = 52r
⇒ 12r2 - 40r + 12 = 0
⇒ 3r2 - 10r + 3 = 0
⇒ 3r2 - 9r - r + 3 = 0
⇒ 3r(r - 3) - 1(r - 3) = 0
⇒ (3r - 1)(r - 3) = 0
⇒ r = `1/3` or r = 3
⇒ a = `12/(1/3)` = 36 or 4
Thus, required terms are :
a, ar, ar2 = 36, 36 x `1/3`, 36 x `1/9` OR 4, 4 x 3, 4 x 9
= 36, 12, 4 OR 4, 12, 36
shaalaa.com
Geometric Progression - Finding Sum of Their First ‘N’ Terms
Is there an error in this question or solution?