Advertisements
Advertisements
Question
Q.18
Sum
Solution
`S_n=an^2+bn`
Replaing n by (n-1), we get
`S_(n-1)=a(n-1)^2+b(n-1)`
`=a(n^2-2n+1)+(bn-b)`
` = an^2-2an+a+bn-b`
`∴ t_n=S_n-S_(n-1)`
` =(an^2+bn)-(an^2-2an+a+bn-b)`
`=an^2+bn-an^2+2an-a-bn+b`
`=2an-a+b`
Replacing n by (n-1), we get
`t_(n-1)=2a(n-1)-a+b`
`=2an-2a-a+b`
Now,
`t_n-t_(n-1)=(2an-a+b)-(2an-2a-a+b)`
`=2an-a+b-2an+2a+a-b`
=2a, Which is constant, independet of n
Thus, the sequence is an A.P.
shaalaa.com
Is there an error in this question or solution?