Advertisements
Advertisements
Question
Q.5
Sum
Solution
(1)`(B+C)/a,(c+a)/b and (a+b)/C "are in A.P"`
`⇒ (c+a)/b-(b+c)/a=(a+b)/c-(c+a)/b`
`⇒ (ac+a^2-b^2-bc)/(ab)=(ab+b^2-c^2-ac)/(bc)`
`⇒((ac-bc)+(a^2-b^2))/(ab)=((ab-ac)+(b^2-c^2))/(bc)`
`⇒(c(a-b)+(a-b)(a+b))/(ab)=(a(b-c)+(b-c)(b+c))/(bc)`
`⇒((a-b)(c+a+b))/(ab)=((b-c)(a+b+c))/(bc)`
`⇒(a-b)/(ab)=(b-c)/(bc)`
`⇒1/b-1/a=1/c-1/b`
`⇒1/b+1/b=1/a+1/c`
`⇒2/b=1/a+1/c`
⇒1/a,1/b and 1/c are in A.P.
(2) `b+c/a, c+a/b and a+b/c "are in A.P."`
`⇒ (c+a)/b-(b+c)/a=(a+b)/c -(c+a)/b`
`⇒(ac+a^2-b^2-bc)/(ab)=(ab+b^2-c^2-ac)/(bc)`
`⇒( c(a-b)+(a-b)(a+b))/(ab)=(a(b-c)+(b-c)(b+c))/(bc)`
`⇒(c(a-b)+(a-b)(a+b))/(ab)=(a(b-c)+(b-c)(b+c))/(bc)`
`⇒((a-b)(c+a+b))/(ab)=((b-c)(a+b+c))/(bc)`
`⇒(a-b)/(ab)=(b-c)/(bc)`
`⇒( a-b)/a=(b-c)/c`
`⇒ ca-bc=ab-ca`
`⇒2ca=ab+bc`
⇒ bc, ca and ab are in A.P
shaalaa.com
Simple Applications of Arithmetic Progression
Is there an error in this question or solution?