Advertisements
Advertisements
Question
Q.8
Sum
Solution
Let 'a' be the first term and 'd' be the common difference of given A.P
`m^(th) "term" =1/n`
`⇒ a+(m-1)d=1/n .................(1)`
`n^(th) "term" =1/m`
`⇒a(n-1)d=1/m...............(2)`
Subtracting (2) from(1), we get
`(m-1)d-(n-1)d=1/n-1/m`
`⇒md-d-nd+d=(m-n)/(mn)`
`⇒(m-n)d=(m-n)/(mn)`
`⇒ d=1/(mn)`
Substituting value of d in (1),we get
`a+(m-1)xx1/(mn)=1/n`
`⇒ a=1/n-(m-1)/(mn)=(m-m+1)/(mn)=1/(mn)`
Now,
`(mn)^(th) "trem"=a+(mn-1)d`
`=1/(mn)+(mn-1)xx1/(mn)`
` =(1+mn-1)/(mn)`
`=(mn)/(mn)`
` =1`
shaalaa.com
Simple Applications of Arithmetic Progression
Is there an error in this question or solution?