Advertisements
Advertisements
Question
Show that 0.142857142857... = `1/7`
Solution
Let x = 0.142857142857 ...(i)
On multiplying both sides of equation (i) by 1000000, we get
1000000x = 142857.142857 ...(ii)
On subtracting equation (i) from equation (ii), we get
1000000x – x = (142857.142857...) – (0.142857...)
⇒ 999999x = 142857
∴ `x = 142857/999999 = 1/7`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Express 0.99999 .... in the form `p/q`. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.
What can the maximum number of digits be in the repeating block of digits in the decimal expansion of `1/17`? Perform the division to check your answer.
Which of the following numbers can be represented as non-terminating, repeating decimals?
There are numbers which cannot be written in the form `p/q, q ≠ 0, p, q` both are integers.
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
`5.bar2`
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
`0.bar001`
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.2555...
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.00323232...
Express the following in the form `bb(p/q)`, where p and q are integers and q ≠ 0.
`0.4bar7`
Express the following in the form `bb(p/q)`, where p and q are integers and q ≠ 0.
`0.bar001`