English

Show that F(X) = Cos X is a Decreasing Function on (0, π), Increasing in (−π, 0) and Neither Increasing Nor Decreasing in (−π, π). -

Advertisements
Advertisements

Question

Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).

Sum

Solution

\[Here, \]
\[f\left( x \right) = \cos x\]
\[\text{Domain of cos x  is}\left( - \pi, \pi \right).\]
\[ \Rightarrow f'\left( x \right) = - \sin x\]
\[  For x \in \left( - \pi, 0 \right), \sin x < 0 \left[ \text{  ∵  sine function is negative in third and fourth quadrant} \right]\]
\[ \Rightarrow - \sin x > 0\]
\[ \Rightarrow f'\left( x \right) > 0\]
\[So, \text{cos x is increasing in }\left( - \pi, 0 \right) . \]
\[\text{For x }\in \left( 0, \pi \right)),\sin x > 0 \left[ \because \text{sine function is positive in first and second quadrant }\right]\]
\[ \Rightarrow - \sin x < 0\]
\[ \Rightarrow f'\left( x \right) < 0\]
\[\text{So,f(x) is decreasing on}\left( 0, \pi \right).\]
\[\text{Thus,f(x) is neither increasing nor decreasing in}\left( - \pi, \pi \right).\]

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×