Advertisements
Advertisements
Question
Show that `(-1 + sqrt(3)"i")^3` is a real number.
Solution
`(-1 + sqrt(3)"i")^3`
= `(-1)^3 + 3(-1)^2 (sqrt(3)"i") + 3(-1) (sqrt(3)"i")^2 + (sqrt(3)"i")^3` ...[(a + b)3 = a3 + 3a2b + 3ab2 + b3]
= `- 1 + 3sqrt(3)"i" - 3(3"i"^2) + 3sqrt(3)"i"^3`
= `-1 + 3sqrt(3)"i" - 3(-3) - 3sqrt(3)"i"` ...[∵ i2 = –1, i3 = – i]
= – 1 + 9
= 8, which is a real number.
APPEARS IN
RELATED QUESTIONS
Write the conjugates of the following complex numbers: 3 + i
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex numbers: 5i
Write the conjugates of the following complex numbers: `sqrt(2) + sqrt(3) "i"`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `(3 + 2"i")/(2 - 5"i") + (3 - 2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20.
Show that `(-1 + sqrt(3) i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(−1+ sqrt3 i)^3` is a real number.
Show that `(-1 + sqrt3i)^3` is a real number.
Show that `(- 1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`