English

Show that the simplified form of (p ∧ q ∧ ∼ r) ∨ (r ∧ p ∧ q) ∨ (∼ p ∨ q) is q ∨ ∼ p. -

Advertisements
Advertisements

Question

Show that the simplified form of (p ∧ q ∧ ∼ r) ∨ (r ∧ p ∧ q) ∨ (∼ p ∨ q) is q ∨ ∼ p.

Sum

Solution

(p ∧ q ∧ ∼ r) ∨ (r ∧ p ∧ q) ∨ (∼ p ∨ q) 

= (p ∧ q ∧ ∼ r) ∨ (p ∧ q ∧ r) ∨ (∼ p ∨ q)   ...(Associative law)

= (p ∧ q) ∧ [∼ r ∨ r] ∨ (∼ p ∨ q)   ...(Distributive law)

= [(p ∧ q) ∧ T] ∨ (∼ p ∨ q)    ...(Complement law)

= (p ∧ q) ∨ (∼ p ∨ q)    ...(Identity law)

= [(p ∧ q) ∨ ∼ p] ∨ q   ...(Associative law)

= [(p ∨ ∼ p) ∧ (q ∨ ∼ p)] ∨ q    ...(Distribution law)

= [T ∧ (q ∨ ∼ p)] ∨ q     ...(Complement law)

= (q ∨ ∼ p) ∨ q    ...(Identity law)

= (q ∨ q) ∨ ∼ p    ....(Associative law)

= q ∨ ∼ p

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×