Advertisements
Advertisements
Question
Simplify: n + (m + 1) + (n + 2) + (m + 3) + (n + 4) + (m + 5)
Solution
n + (m + 1) + (n + 2) + (m + 3) + (n + 4) + (m + 5)
= n + m + 1 + n + 2 + m + 3 + n + 4 + m + 5
= n + n + n + m + m + m + 1 + 2 + 3 + 4 + 5
= (1 + 1 + 1)n + (1 + 1 + 1)m + 15
= 3n + 3m + 15
= 3m + 3n + 15
APPEARS IN
RELATED QUESTIONS
Add: t - 8tz, 3tz - z, z - t
Add: -7mn + 5, 12mn + 2, 9mn - 8, -2mn - 3
Subtract: 5a2 - 7ab + 5b2 from 3ab - 2a2 -2b2
Subtract 3x − 4y − 7z from the sum of x − 3y + 2z and − 4x + 9y − 11z.
If \[x + \frac{1}{x} = 12,\] find the value of \[x - \frac{1}{x} .\]
Add the following expressions:
p2 – 7pq – q2 and –3p2 – 2pq + 7q2
Add the following expressions:
p2 – q + r, q2 – r + p and r2 – p + q
Add the following expressions:
x3y2 + x2y3 + 3y4 and x4 + 3x2y3 + 4y4
How much is y4 – 12y2 + y + 14 greater than 17y3 + 34y2 – 51y + 68?
Translate the following algebraic expressions:
8(m + 5)