Advertisements
Advertisements
Question
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Options
x + 2sin x + 2sin2x + C
2x + sin x + 2sin2x + C
x + 2sinx + sin2x + C
2x + sinx + sin2x + C
MCQ
Fill in the Blanks
Solution
`int (sin (5x)/2)/(sin x/2)dx` is equal to x + 2sinx + sin2x + C. (where C is a constant of integration).
Explanation:
`int (sin (5x)/2)/(sin x/2)dx`
`int (2sin (5x)/2 cos x/2)/(2sin x/2 cos x/2)dx`
= `int (sin3x + sin2x)/sinx dx`
Using 2sinAcosB = sin(A + B) + sin(A – B)
= `int (3sinx - 4sin^3x + 2sinxcosx)/sinx dx`
= `int(3 - 4sin^2x + 2cosx)dx`
= `(3 - 4((1 - cos2x)/2) + 2cosx)dx`
= 3x + 2sinx – 2x + sin2x + C
= x + 2sinx + sin2x + C
shaalaa.com
Is there an error in this question or solution?