Advertisements
Advertisements
Question
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
Options
- cot \[\frac{\theta}{2}\]
cot \[\frac{\theta}{2}\]
tan \[\frac{\theta}{2}\]
- tan \[\frac{\theta}{2}\]
MCQ
Solution
- cot \[\frac{\theta}{2}\]
Explanation:
We have, \[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\]
= \[\frac{1 - \text{cos} \theta + \text{sin} \theta}{1 - \text{cos} \theta - \text{sin} \theta}\]
`= (2 cos^2 theta/2 - 2 sin theta/2 cos theta/2)/(2 sin^2 theta/2 - 2 sin theta/2 cos theta/2)`
`= (2 cos theta/2 (cos theta/2 - sin theta/2))/(2 sin theta/2 (sin theta/2 - cos theta/2))`
= `(- cos theta/2)/(sin theta/2)`
= `- cot theta/2`
shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
Is there an error in this question or solution?