Advertisements
Advertisements
Question
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
Options
θ = `(npi)/2 + (-1)^n pi/4`
θ = `npi + (-1)^n pi/3`
θ = `npi - pi/3`
θ = `npi - pi/4`
MCQ
Solution
θ = `(npi)/2 + (-1)^n pi/4`
Explanation:
Given, 3 tan(θ – 15) = tan(θ + 15). `tan A/tan B = 3/1`,
Where A = θ + 15°, B = θ – 15°
On applying componendo and dividendo, we get
⇒ `(tan A + tan B)/(tan A - tan B) = (3 + 1)/(3 - 1)`
⇒ `(sin A/cos A + sin B/cos B)/(sin A/cos A - sin B/sin B)` = 2
⇒ `(sin (A + B))/(sin (A - B))` = 2
⇒ sin 2θ = 2 sin 30°
⇒ sin 2θ = `2 * 1/2 = 1 = sin pi/2`
⇒ 2θ = `npi + (-1)^n pi/2`
⇒ θ = `(npi)/2 + (-1)^n pi/4`.
shaalaa.com
Is there an error in this question or solution?