Advertisements
Advertisements
Question
Solve 2|x + 1| − 6 ≤ 7 and graph the solution set in a number line
Solution
2|x + 1| − 6 ≤ 7
⇒ 2|x + 1| ≤ 7 + 6 (= 13)
⇒ |x + 1| ≤ `13/2`
⇒ `x + 1 > (-13)/2`
or
`x + 1 < 13/2``
`x + 1 > (-13)/2`
⇒ `x > (-13)/2 - 1 (= (-15)/2)` ......(1)
`x + 1< 13/2`
⇒ `x < 13/2 - 1 (= 11/2)` .....(2)
From (1) and (2)
`(-15)/2 ≤ x ≤ 11/2`
APPEARS IN
RELATED QUESTIONS
Solve for x: |3 − x| < 7
Solve for x: |4x − 5| ≥ −2
Solve for x: `|3 - 3/4x| ≤ 1/4`
Solve for x: |x| − 10 < −3
Solve `1/(|2x - 1|) < 6` and express the solution using the interval notation
Solve −3|x| + 5 ≤ −2 and graph the solution set in a number line
Solve `1/5|10x - 2| < 1`
Solve |5x − 12| < −2
Choose the correct alternative:
If |x + 2| ≤ 9, then x belongs to
Choose the correct alternative:
If `("k"x)/((x + 2)(x - 1)) = 2/(x + 2) + 1/(x - 1)`, then the value of k is
Choose the correct alternative:
If `(1 - 2x)/(3 + 2x - x^2) = "A"/(3 - x) + "B"/(x + 1)`, then the value of A + B is