Advertisements
Advertisements
Question
Solve` (2y^2-4x+5)dx=(y-2y^2-4xy)dy`
Solution
` (2y^2-4x+5)dx=(y-2y^2-4xy)dy`
Compare with Mdx + Ndy = 0
∴ M = (2𝒚𝟐−𝟒𝒙+𝟓) ∴ N = - (𝒚−𝟐𝒚𝟐−𝟒𝒙𝒚)
`(delM)/(dely)=4y` `(delN)/(del x)=4y`
` ∴ (delM)/(dely)=(delN)/(del x)`
The given diff. eqn is exact .
The solution of exact diff. eqn is given by ,
`int Mdx + int[N-del/(del y) Mdx]dy=c`
`int= int((2y^2-4x+5)) dx=2xy^2-2x^2+5x`
`del/(del y) intMdx=4xy`
`int[N-del/(dely) Mdx]dy=int[4xy-y+2y^2-4xy]dy=2/3y^3-y^2/2`
∴ `2xy^2-2x^2+5x+2/3y^3-y^2/2=c`
shaalaa.com
Particular Integrals of Differential Equation
Is there an error in this question or solution?