Advertisements
Advertisements
Question
Solve `(D^2+D)y=e^(4x)`
Solution
For auxiliary equation,
`D^2+D=0`
Solving we get,
`D=-1,0`
∴` C.F.= C_1e^-x+C_2e^(o x)`
∴ `C.F=c_1 e^-x+C_2`
For P.I.,
`y= (e^(4x))/(D^2+D)`
Now, put D = 4
∴ `y= e^(4x)/(4^2+4)=e^(4x)/20`
∴ The complete solution is,` y=C_1 e^-x+C_2+e^(4x)/20`
shaalaa.com
Linear Differential Equation with Constant Coefficient‐ Complementary Function
Is there an error in this question or solution?