Advertisements
Advertisements
Question
Solve the following equation by Gauss Seidal method:
`10x_1+x_2+x_3=12`
`2x_1+10x_2+x_3-13`
`2x_1+2x_2+10x_3=14`
Solution
By Gauss Seidal method ,
Given eqn : `10x_1+x_2+x_3=12`
`2x_1+10x_2+x_3-13`
`2x_1+2x_2+10x_3=14`
From given eqn : |10|>|1|+|1|
|10|>|2|+|1|
|10|>|2|+|2|
The given eqn are in correct order.
`therefore x_1=1/10[12-x_2-x_3]`
`therefore x_2=1/10[13-2x_1-x_3]`
`therefore x_3=1/10[14-2x_2-2x_1]`
I) For 1st iteration : take `x_2=0, x_3=0`
`x_1=1/10[12]=1.2`
`x_1=1.2, x_3=0` gives `x_2=1.06`
`x_1=1.2, x_2=1.06` gives `x_3=0.948`
II) For 2nd iteration : take `x_2=1.06, x_3=0.948`
`x_1=1/10[12-1.06-0.948]=0.9992`
`x_1=0.992, x_3=0.948` gives `x_2=1.0068`
`x_1=0.992, x_2=1.0068` gives `x_3=1.0002`
III) For 3rd iteration : `x_2=1.0068`, `x_3=1.0002`
`x_1=1/10[12-1.0068-1.0002]=0.9993`
`x_1=0.993, x_3=1.0002` gives `x_2=1.00`
`x_1=0.993, x_2=1.00` gives `x_3=1.00`
Result : `x_1=1.00, x_2=1.00, x_3=1.00`