Advertisements
Advertisements
Question
Solve the following quadratic equations by factorization:
\[\frac{x - 2}{x - 3} + \frac{x - 4}{x - 5} = \frac{10}{3}; x \neq 3, 5\]
Solution
\[\frac{x - 2}{x - 3} + \frac{x - 4}{x - 5} = \frac{10}{3}\]
\[ \Rightarrow \frac{x - 2}{x - 3} - \frac{10}{3} = - \frac{x - 4}{x - 5}\]
\[ \Rightarrow \frac{3\left( x - 2 \right) - 10\left( x - 3 \right)}{3\left( x - 3 \right)} = - \frac{x - 4}{x - 5}\]
\[ \Rightarrow \frac{3x - 6 - 10x + 30}{3x - 9} = - \frac{x - 4}{x - 5}\]
\[ \Rightarrow - \frac{7x - 24}{3x - 9} = - \frac{x - 4}{x - 5}\]
\[ \Rightarrow \left( 7x - 24 \right)\left( x - 5 \right) = \left( 3x - 9 \right)\left( x - 4 \right)\]
\[ \Rightarrow 7 x^2 - 59x + 120 = 3 x^2 - 21x + 36\]
\[ \Rightarrow 4 x^2 - 38x + 84 = 0\]
\[ \Rightarrow 2 x^2 - 19x + 42 = 0\]
\[ \Rightarrow 2 x^2 - 12x - 7x + 42 = 0\]
\[ \Rightarrow 2x(x - 6) - 7(x - 6) = 0\]
\[ \Rightarrow (2x - 7)(x - 6) = 0\]
\[ \Rightarrow 2x - 7 = 0 \text { or } x - 6 = 0\]
\[ \Rightarrow x = \frac{7}{2} \text { or } x = 6\]
Hence, the factors are 6 and \[\frac{7}{2}\].
APPEARS IN
RELATED QUESTIONS
Solve for x
:`1/((x-1)(x-2))+1/((x-2)(x-3))=2/3` , x ≠ 1,2,3
Solve the following quadratic equations by factorization:
48x2 − 13x − 1 = 0
Solve the following quadratic equations by factorization:
`1/(x-2)+2/(x-1)=6/x` , x ≠ 0
Some students planned a picnic. The budget for food was Rs. 480. But eight of these failed to go and thus the cost of food for each member increased by Rs. 10. How many students attended the picnic?
If the equation x2 − bx + 1 = 0 does not possess real roots, then
The value of c for which the equation ax2 + 2bx + c = 0 has equal roots is
Solve the following equation: a2b2x2 + b2x - a2x - 1 = 0
A two digit positive number is such that the product of its digits is 6. If 9 is added to the number, the digits interchange their places. Find the number.
Find three successive even natural numbers, the sum of whose squares is 308.
The polynomial equation x(x + 1) + 8 = (x + 2) (x – 2) is: