Advertisements
Advertisements
Question
Solve the following system of equations by the method of cross-multiplication.
11x + 15y = – 23; 7x – 2y = 20
Sum
Solution
The given system of equations is
11x + 15y + 23 = 0
7x – 2y – 20 = 0
Now, by cross-multiplication method, we have
`\Rightarrow \frac{x}{15\times (-20)-(-2)\times 23}=\frac{-y}{11\times(-20)-7\times 23}=\frac{1}{11\times (-2)-7\times 15}`
`\Rightarrow \frac{x}{-300+46}=\frac{-y}{-220-161}=\frac{1}{-22-105}`
`\Rightarrow \frac{x}{-254}=\frac{-y}{-381}=\frac{1}{-127}`
`\Rightarrow \frac{x}{-254}=\frac{1}{-127}\Rightarrow x=2`
`\text{and}\frac{-y}{-381}=\frac{1}{-127}\Rightarrow \text{y}=-3`
Hence, x = 2, y = – 3 is the required solution.
shaalaa.com
Is there an error in this question or solution?