Advertisements
Advertisements
Question
Solve the following equation.
`[sqrt( 4x + 1) + sqrt( x + 3 )]/[sqrt( 4x + 1 ) - sqrt( x+3 )]=4/1`
Solution
`[sqrt( 4x + 1) + sqrt( x + 3 )]/[sqrt( 4x + 1 ) - sqrt( x+3 )]=4/1`
Applying componendo and dividendo, we get
`{[sqrt( 4x + 1) + sqrt( x + 3 )] + [sqrt( 4x + 1 ) - sqrt( x+3 )]} /{[sqrt( 4x + 1) + sqrt( x + 3 )] - [sqrt( 4x + 1 ) - sqrt( x+3 )]}=(4+1)/(4-1)`
⇒ `(2sqrt[4x+1])/ (2sqrt[x + 3]) = 5/3`
⇒ `sqrt[4x+1]/sqrt[x + 3] = 5/3`
Squaring on both sides, we get
`(4x + 1)/(x +3) = (5/3)^2`
⇒ `(4x + 1)/(x +3) = 25/9`
⇒ `9(4x + 1) + 25(x +3)`
⇒ `36x +9 = 25x + 75`
⇒ `36x - 25x = 75 - 9`
⇒ `11x = 66`
⇒ `x = 6`
Thus, the solution of the given equation is x = 6.
APPEARS IN
RELATED QUESTIONS
Solve the following equation.
`(x^2 + 12x - 20)/(3x - 5) = (x^2 + 8x + 12)/(2x + 3)`
Solve the following equation.
`[10x^2 + 15x + 63]/[5x^2 - 25x + 12] = (2x + 3)/( x -5)`
Solve the following equation.
`[( 2x + 1)^2 + (2x - 1)^2]/[(2x + 1)^2 - (2x - 1)^2] = 17/8`
Solve the following equation.
`[(4x +1)^2 + ( 2x + 3)^2]/[4x^2 + 12x + 9] = 61/36`
Solve the following equation.
`[(3x - 4)^3 - ( x + 1)^3]/[( 3x - 4)^3 + ( x + 1)^3] = 61/189`