Advertisements
Advertisements
Question
Solve the following equations by using Cramer’s rule:
x + y + z = 6, 2x + 3y – z = 5, 6x – 2y – 3z = – 7
Solution
The equations are
x + y + z = 6
2x + 3y – z = 5
6x – 2y – 3z = – 7
Here Δ = `|(1, 1, 1),(2, 3, -1),(6, -2, -3)|`
= 1(– 9 – 2) –1(– 6 + 6) + 1(– 4 – 18)
= 1(–11) – 1(0) +1(– 22)
= – 11 – 22
= – 33 ≠ 0
∴ We can apply Cramer’s Rule and the system is consistent and it has unique solution.
Now, `Delta_x = |(6, 1, 1),(5, 3, -1),(-7, -2, -3)|`
= 6(– 9 – 2) – 1(–15 – 7) + 1(–10 + 21)
= 6(– 11) – 1(– 22)+ 1 (11)
= – 66 + 22 + 11
= – 33
`Delta_y |(1, 6, 1),(2, 5, -1),(6, -7, -3)|`
= 1(– 15 – 7) – 6(– 6 + 6) + 1(– 14 – 30)
= 1(– 22) – 6(0) + 1(– 44)
= – 66
`Delta_z = |(1, 1, 6),(2, 3, 5),(6, -2, -7)|`
= 1(– 21 + 10) – 1(– 14 – 30) + 6(– 4 – 18)
= (– 11) – 1(– 44) + 6(– 22)
= – 11 + 44 – 132
= – 99
∴ By Cramer’s rule
x = `Delta_x/Delta = (- 33)/(-33)` = 1
y = `Delta_y/Delta = (- 66)/(- 33)` = 2
z = `Delta_z/Delta = (- 99)/(- 33)` = 3
∴ (x, y, z) = (1, 2, 3)