Advertisements
Advertisements
Question
Solve the following linear equations by using Cramer’s Rule:
x + y − 2z = –10, 2x + y – 3z = –19, 4x + 6y + z = 2
Solution
The given equations are
x + y – 2z = – 10 ...(1)
2x + y – 3z = – 19 ...(2)
4x + 6y + z = 2 ...(3)
∴ D = `|(1, 1, -2),(2, 1, -3),(4, 6, 1)|`
= 1(1 + 18) – 1(2 + 12) – 2(12 – 4)
= 19 – 14 – 16
= – 11 ≠ 0
Dx = `|(-10, 1, -2),(-19, 1, -3),(2, 6, 1)|`
= – 10(1 + 18) – 1 ( –19 + 6) – 2( –114 – 2)
= – 190 + 13 + 232
= 55
Dy = `|(1, -10, -2),(2, -19, -3),(4, 2, 1)|`
= 1(– 19 + 6) + 10 (2 + 12) – 2 (4 + 76)
= – 13 + 140 – 160
= – 33
Dz = `|(1, 1, -10),(2, 1, -19),(4, 6, 2)|`
= 1(2 + 114) – 1 (4 +76) – 10(12 – 4)
= 116 – 80 – 80
= – 44
∴ by Cramer's rule,
x = `"D"_x/"D" = 55/(-11)` = – 5
y = `"D"_y/"D" = (-33)/(-11)` = 3
z = `"D"_z/"D" = (-44)/(-11)` = 4
∴ x = – 5, y = 3, z = 4.