Advertisements
Advertisements
Question
Solve the following problem.
Calculate the value of the universal gravitational constant from the given data. Mass of the Earth = 6 × 1024 kg, Radius of the Earth = 6400 km, and the acceleration due to gravity on the surface = 9.8 m/s2.
Solution
Given: M = 6 × 1024 kg, R = 6400 km = 6.4 × 106 m, g = 9.8 m/s2
To find: Gravitational constant (G)
Formula: g = `"GM"/"R"^2`
Calculation: From formula,
G = `"gR"^2/"M"`
G = `(9.8 xx (6.4 xx 10^6)^2)/(6 xx 10^24) = (401.4 xx 10^12)/(6 xx 10^24)`
∴ G = 6.69 × 10-11 Nm2/kg2
The value of gravitational constant is 6.69 × 10-11 Nm2/kg2 .
APPEARS IN
RELATED QUESTIONS
A nut becomes loose and gets detached from a satellite revolving around the earth. Will it land on the earth? If yes, where will it land? If no, how can an astronaut make it land on the earth?
Consider earth satellites in circular orbits. A geostationary satellite must be at a height of about 36000 km from the earth's surface. Will any satellite moving at this height be a geostationary satellite? Will any satellite moving at this height have a time period of 24 hours?
A spacecraft consumes more fuel in going from the earth to the moon than it takes for a return trip. Comment on this statement.
Two satellites A and B move round the earth in the same orbit. The mass of B is twice the mass of A.
At what rate should the earth rotate so that the apparent g at the equator becomes zero? What will be the length of the day in this situation?
A pendulum having a bob of mass m is hanging in a ship sailing along the equator from east to west. When the ship is stationary with respect to water the tension in the string is T0. (a) Find the speed of the ship due to rotation of the earth about its axis. (b) Find the difference between T0 and the earth's attraction on the bob. (c) If the ship sails at speed v, what is the tension in the string? Angular speed of earth's rotation is ω and radius of the earth is R.
A Mars satellite moving in an orbit of radius 9.4 × 103 km takes 27540 s to complete one revolution. Calculate the mass of Mars.
What is the true weight of an object in a geostationary satellite that weighed exactly 10.0 N at the north pole?
The radius of a planet is R1 and a satellite revolves round it in a circle of radius R2. The time period of revolution is T. Find the acceleration due to the gravitation of the planet at its surface.
Choose the correct option.
The binding energy of a satellite revolving around the planet in a circular orbit is 3 × 109 J. It's kinetic energy is ______.
Answer the following question.
Define the binding energy of a satellite.
Answer the following question.
What is periodic time of a geostationary satellite?
Describe how an artificial satellite using a two-stage rocket is launched in an orbit around the Earth.
Calculate the kinetic energy, potential energy, total energy and binding energy of an artificial satellite of mass 2000 kg orbiting at a height of 3600 km above the surface of the Earth.
Given: G = 6.67 × 10-11 Nm2/kg2
R = 6400 km, M = 6 × 1024 kg
Answer the following question in detail.
Two satellites A and B are revolving round a planet. Their periods of revolution are 1 hour and 8 hour respectively. The radius of orbit of satellite B is 4 × 104 km. Find radius of orbit of satellite A.
A planet has mass 6.4 × 1024 kg and radius 3.4 × 106 m. Calculate the energy required to remove an object of mass 800 kg from the surface of the planet to infinity.
A body weighs 5.6 kg wt on the surface of the Earth. How much will be its weight on a planet whose mass is 7 times the mass of the Earth and radius twice that of the Earth’s radius?
Which of the following statements is CORRECT in respect of a geostationary satellite?
The kinetic energy of a revolving satellite (mass m) at a height equal to thrice the radius of the earth (R) is ______.
An aircraft is moving with uniform velocity 150 m/s in the space. If all the forces acting on it are balanced, then it will ______.
Two satellites of masses m1 and m2 (m1 > m2) are revolving round the earth in circular orbit of radii r1 and r2 (r1 > r2) respectively. Which of the following statements is true regarding their speeds v1 and v2?
If a body weighing 40 kg-wt is taken inside the earth to a depth to `1/2` th radius of the earth, then the weight of the body at that point is ____________.
Satellites orbiting the earth have finite life and sometimes debris of satellites fall to the earth. This is because ______.
A satellite is revolving around a planet in a circular orbit close to its surface and ρ is the mean density and R is the radius of the planet, then the period of ______.
(G = universal constant of gravitation)
Two satellites are orbiting around the earth in circular orbits of same radius. One of them is 10 times greater in mass than the other. Their period of revolutions are in the ratio ______.
Two satellites of same mass are orbiting round the earth at heights of r1 and r2 from the centre of earth. Their potential energies are in the ratio of ______.