English

Solve the following problem : Find the expected value and variance of the r. v. X if its probability distribution is as follows. x 1 2 3 ... n P(X = x) 1n 1n 1n ... 1n - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x 1 2 3 ... n
P(X = x) `(1)/"n"` `(1)/"n"` `(1)/"n"` ... `(1)/"n"`
Sum

Solution

E(X) = \[\sum\limits_{i=1}^{n} x_i\cdot\text{P}(x_i)\]

= `1(1/"n") + 2(1/"n") + 3(1/"n") + ... + "n"(1/"n")`

= `(1 + 2 + 3 + .... + "n")/"n"` 

= `(1)/"n" xx ("n"("n" + 1))/(2)`

= `("n" + 1)/(2)`

E(X2) = \[\sum\limits_{i=1}^{n} x_i^2\text{P}(x_i)\]

= `1^2(1/"n") + 2^2(1/"n") + 3^2(1/"n") + ... + "n"^2(1/"n")`

= `(1^2 + 2^2 + 3^2 + .... + "n"^2)/"n"` 

= `(1)/"n" xx ("n"("n" + 1)(2"n" + 1))/(6)`

= `(("n" + 1)(2"n" + 1))/(6)`

∴ Var(X) = E(X2) – [E(X)]2 

= `(("n" + 1)(2"n" + 1))/(2 xx 3) - ("n" + 1)^2/(4)`

= `("n" + 1)/(2) ((2"n" + 1)/(3) - ("n" + 1)/(2))`

= `("n" + 1)/(2) ((4"n" + 2 - 3"n" - 3)/6)`

= `(("n" + 1)("n" - 1))/(12)`

= `("n"^2 - 1)/(12)`.

shaalaa.com
Probability Distribution of Discrete Random Variables
  Is there an error in this question or solution?
Chapter 8: Probability Distributions - Part I [Page 156]

APPEARS IN

RELATED QUESTIONS

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2 3 4
P(X) 0.1 0.5 0.2 − 0.1 0.2

It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

 Verify whether f (x) is p.d.f. of r.v. X.


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Find probability that X is negative


Find k, if the following function represents p.d.f. of r.v. X.

f(x) = kx(1 – x), for 0 < x < 1 and = 0, otherwise.

Also, find `P(1/4 < x < 1/2) and P(x < 1/2)`.


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution :

x -2 -1 0 1 2 3
p(X=x) 0.1 k 0.2 2k 0.3 k

then P (X = −1) =


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

1

P (X ≤ 3/ X > 0)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)


Find the probability distribution of number of heads in four tosses of a coin


70% of the members favour and 30% oppose a proposal in a meeting. The random variable X takes the value 0 if a member opposes the proposal and the value 1 if a member is in favour. Find E(X) and Var(X).


Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)


Given that X ~ B(n,p), if n = 25, E(X) = 10, find p and Var (X).


Solve the following problem :

The p.m.f. of a r.v.X is given by

`P(X = x) = {(((5),(x)) 1/2^5", ", x = 0", "1", "2", "3", "4", "5.),(0,"otherwise"):}`

Show that P(X ≤ 2) = P(X ≤ 3).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x – 1 0 1
P(X = x) `(1)/(5)` `(2)/(5)` `(2)/(5)`

Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

X 0 1 2 3 4 5
P(X = x) `(1)/(32)` `(5)/(32)` `(10)/(32)` `(10)/(32)` `(5)/(32)` `(1)/(32)`

The probability distribution of X is as follows:

X 0 1 2 3 4
P(X = x) 0.1 k 2k 2k k

Find k and P[X < 2]


Choose the correct alternative:

f(x) is c.d.f. of discete r.v. X whose distribution is

xi – 2 – 1 0 1 2
pi 0.2 0.3 0.15 0.25 0.1

then F(– 3) = ______


Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.

x 1 2 3
P(X = x) `1/5` `2/5` `2/5`

Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`

E(X) = `square + square + square = square`

Var(X) = `"E"("X"^2) - {"E"("X")}^2`

= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`

= `square - square`

= `square`


The following function represents the p.d.f of a.r.v. X

f(x) = `{{:((kx;, "for"  0 < x < 2, "then the value of K is ")),((0;,  "otherwise")):}` ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×