Advertisements
Advertisements
Question
Solve the following question and mark the best possible option.
Find the maximum value of ab (72 – 3a – 4b), for a, b > 0
Options
1112
1442
1152
None of these
MCQ
Solution
Let S = ab (72 – 3a – 4b)
We have AM ≥ GM
⇒ `(3a + 4b + (72 – 3a – 4b))/3 ≥ root(3)(3a xx 4b xx (72 – 3a – 4b))`
⇒ 24 ≥ (12)1/3`root(3)( ab(72 – 3a – 4b))`
⇒ ab(72 – 3a – 4b) ≤ `(24)^3/12`
⇒ ab (72 - 3a - 4b) ≤ 1152
⇒ Maximum value of ab (72 - 3a - 4b) is 1152.
shaalaa.com
Simplification (Entrance Exam)
Is there an error in this question or solution?