Advertisements
Advertisements
Question
Solve the following question and mark the best possible option.
If 0 < b < a, then find the minimum value of `a + 1/((a - b)b)`.
Options
3
4
2
1
MCQ
Solution
We have `a + 1/((a - b)b)`
= `b + (a - b) + 1/((a - b)b) ≥ 3 root(3)(b(a - b) xx 1/((a - b)b)`
= a + `1/((a - b)b)` ≥ 3.
Hence the minimum value is 3.
shaalaa.com
Simplification (Entrance Exam)
Is there an error in this question or solution?