English

Solve the following simultaneous equations using Cramer's rule: 4m + 6n = 54; 3m + 2n = 28 - Algebra

Advertisements
Advertisements

Question

Solve the following simultaneous equations using Cramer's rule:

4m + 6n = 54; 3m + 2n = 28

Sum

Solution

The given simultaneous equations are

4m + 6n = 54                        ...(i)
3m + 2n = 28                        ...(ii)

Comparing the given equation with

a1m + b1n = c1 and a2m + b2n = c2, we get

a1 = 4, b1 = 6, C1 = 54
a2 = 3, b2 = 2, c2 = 28

       `D = |(a_1, b_1),(a_2, b_2)| = |(4,6),(3,2)| = 8 -18 = - 10`

 

     `Dm = |(c_1, b_1),(c_2, b_2)| = |(54,6),(28,2)| = 108 - 168 = -  60 `

 

    `Dn = |(a_1, c_1),(a_2, c_2)| = |(4,54),(3,28)| = 112 - 162 = - 50`

∴ By Cramer's rule, we get

                                `m = D_m/D = (-60)/-10 = 6`

and                          `n = D_n/D = (-50)/-10 = 5`

  ∴  Solution = (m, n) = (65)

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×