Advertisements
Advertisements
Question
State whether the following statement is True or False:
The equation of tangent to the curve y = 4xex at `(-1, (- 4)/"e")` is ye + 4 = 0
Options
True
False
Solution
True.
Explanation:
y = 4x ex
∴ `"dy"/"dx" = 4"e"^"x" + 4"xe"^"x"`
Slope of the tangent at `(-1, (- 4)/"e")` is
`("dy"/"dx")_((-1, (- 4)/"e")` `= 4"e"^-1 + 4(-1)"e"^-1`
`= 4/"e" - 4/"e" = 0`
∴ Equation of the tangent at `(-1, (- 4)/"e")` is `("y" + 4/"e")` = 0(x + 1)
∴ ye + 4 = 0
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function from first principle.
(x – 1) (x – 2)
Find the derivative of the following function from first principle:
−x
Find the derivative of the following function from first principle:
(–x)–1
Find the derivative of the following function from first principle:
`cos (x - pi/8)`
Find the equation of tangent and normal to the curve at the given points on it.
2x2 + 3y2 = 5 at (1, 1)
Find the equation of tangent and normal to the curve at the given points on it.
x2 + y2 + xy = 3 at (1, 1)
Choose the correct alternative.
The equation of tangent to the curve x2 + y2 = 5 where the tangent is parallel to the line 2x – y + 1 = 0 are
Choose the correct alternative.
If f(x) = 3x3 - 9x2 - 27x + 15 then
Fill in the blank:
The slope of tangent at any point (a, b) is called as _______.
Fill in the blank:
If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______
State whether the following statement is True or False:
x + 10y + 21 = 0 is the equation of normal to the curve y = 3x2 + 4x - 5 at (1, 2).
Find the equation of tangent and normal to the following curve.
xy = c2 at `("ct", "c"/"t")` where t is parameter.
Find the equation of tangent and normal to the following curve.
x = `1/"t", "y" = "t" - 1/"t"`, at t = 2
Find the equation of normal to the curve y = `sqrt(x - 3)` which is perpendicular to the line 6x + 3y – 4 = 0.
Find the equations of tangent and normal to the curve y = 3x2 – x + 1 at the point (1, 3) on it
Find the equation of tangent to the curve y = x2 + 4x at the point whose ordinate is – 3
y = ae2x + be-3x is a solution of D.E. `(d^2y)/dx^2 + dy/dx + by = 0`