Advertisements
Advertisements
Question
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Options
1
2
`1/4`
`5/4`
MCQ
Fill in the Blanks
Solution
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to 2.
Explanation:
Given expression
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)`
`tan(2(tan^-1(1/5) + tan^-1(1/8)) + sec^-1 sqrt(5)/2)`
= `tan(2tan^-1((1/8 + 1/5)/(1 - 1/40)) + sec^-1 sqrt(5)/2)`
Let `sec^-1 sqrt(5)/2` = θ,
Then, tan θ = `1/2`
θ = `tan^-1 1/2`
So, `tan(2tan^-1 1/3 + tan^-1 1/2)`
= `tan(tan^-1((2/3)/(8/9)) + tan^-1 1/2)`
= `tan(tan^-1(3/4) + tan^-1(1/2))`
= `tan(tan^-1((3/4 + 1/2)/(1 - 3/4 xx 1/2)))`
= tan(tan–1 (2))
= 2
shaalaa.com
Is there an error in this question or solution?