Advertisements
Advertisements
Question
`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.
Options
`2/3`
0
`1/15`
`3/2`
MCQ
Fill in the Blanks
Solution
`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to `underlinebb(2/3)`.
Explanation:
Given: `lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3`
Apply Leibniz's rule:
`"d"/("d"x)int_("f"(x))^("g"(x)) "u"("t")"dt" = "u"("g"(x))."g"^'(x)-"u"("f"(x))."f"^'(x)`
∴ `"d"/("d"x)int_0^(x^2) sinsqrt("t")"dt" = sin(sqrt(x^2)).2x - sin(0).0 = sin(|x|).2x`
Apply t Hospital's rule in
`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3`
= `lim_(x→0^+) ("d"/("d"x)int_0^(x^2)(sinsqrt("t"))"dt")/("d"/("d"x)(x^3))`
= `lim_(x→0^+)(2x.sin(|x|))/(3x^2)`
= `2/3lim_(x→0^+)(sin|x|)/x`
= `2/3 xx 1 = 2/3` ...`(∵ lim_(x→0) sinx/x = 1)`
shaalaa.com
Concept of Limits
Is there an error in this question or solution?