Advertisements
Advertisements
Question
Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is ______.
Options
69760
30240
99748
99784
Solution
Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is 69760.
Explanation:
Number of 5 letters words (with the condition that a letter can be repeated) = 105 .
Again number of words using 5 different letters is 10P5 .
Therefore, required number of letters
= Total number of words – Total number of words in which no letter is repeated
= 105 – 10P5
= 69760.
APPEARS IN
RELATED QUESTIONS
How many 3-digit even numbers can be made using the digits 1, 2, 3, 4, 6, 7, if no digit is repeated?
Find x in each of the following:
Which of the following are true:
(2 +3)! = 2! + 3!
Which of the following are true:
(2 × 3)! = 2! × 3!
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
In how many ways can three jobs I, II and III be assigned to three persons A, B and C if one person is assigned only one job and all are capable of doing each job?
If three six faced die each marked with numbers 1 to 6 on six faces, are thrown find the total number of possible outcomes ?
How many three digit numbers can be formed by using the digits 0, 1, 3, 5, 7 while each digit may be repeated any number of times?
Find the total number of ways in which 20 balls can be put into 5 boxes so that first box contains just one ball ?
The number of arrangements of the word "DELHI" in which E precedes I is
A 5-digit number divisible by 3 is to be formed using the digits 0, 1, 2, 3, 4 and 5 without repetition. The total number of ways in which this can be done is
The number of arrangements of the letters of the word BHARAT taking 3 at a time is
The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is
In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is
If (n+2)! = 60[(n–1)!], find n
Find the number of arrangements that can be made out of the letters of the word “ASSASSINATION”.
Suppose 8 people enter an event in a swimming meet. In how many ways could the gold, silver and bronze prizes be awarded?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if question number n has n + 1 choices?
How many strings can be formed from the letters of the word ARTICLE, so that vowels occupy the even places?
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many distinct 6-digit numbers are there?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.
The total number of 9 digit numbers which have all different digits is ______.
Let b1, b2, b3, b4 be a 4-element permutation with bi ∈ {1, 2, 3, .......,100} for 1 ≤ i ≤ 4 and bi ≠ bj for i ≠ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1, b2, b3, b4 is equal to ______.
If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.
The number of permutations by taking all letters and keeping the vowels of the word ‘COMBINE’ in the odd places is ______.