English

The 24th Term of an A.P. is Twice Its 10th Term. Show that Its 72nd Term is 4 Times Its 15th Term. - Mathematics

Advertisements
Advertisements

Question

The 24th term of an A.P. is twice its 10th term. Show that its 72nd term is 4 times its 15thterm.

Sum

Solution

Let a be the first term and d be the common difference.
We know that, nth term = an a + (n − 1)d
According to the question,
a24 = 2a10
⇒ a + (24 − 1)d = 2(a + (10 − 1)d)
⇒ a + 23d = 2a + 18d
⇒ 23d − 18= 2a − a
⇒ 5a
⇒ a = 5d   .... (1)
Also,
a72 = a + (72 − 1)d
      = 5d + 71d              [From (1)]
      = 76d                      ..... (2)
and
a15 a + (15 − 1)d
      = 5d + 14d              [From (1)]
      = 19d                      ..... (3)
On comparing (2) and (3), we get
76= 4 × 19d
⇒ a72 = 4 × a15
Thus, 72nd term of the given A.P. is 4 times its 15th term.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Arithmetic Progression - Exercise 5.4 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 5 Arithmetic Progression
Exercise 5.4 | Q 41 | Page 26
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×