Advertisements
Advertisements
Question
The altitude through vertex C of a triangle ABC, with position vectors of vertices `veca, vecb, vecc` respectively is:
Options
`(|vecb xx vecc + vecc xx veca + veca xx vecb|)/(|vecb - veca|)`
`(|veca + vecb + vecc|)/(|vecb - veca|)`
`(|vecb xx vecc + vecc xx veca + veca xx vecb|)/(|vecb xx veca|)`
None of these
MCQ
Solution
`(|vecb xx vecc + vecc xx veca + veca xx vecb|)/(|vecb - veca|)`
Explanation:
Let CM be the altitude through C.
Then, area of triangle ABC
= `1/2 (AB)(CM) = 1/2 |vecb - veca| CM` ......(i)
Again, area of triangle ABC
= `1/2 |vec(AB) xx vec(AC)|`
= `1/2 |(vecb - veca) xx (vecc - veca)|`
= `1/2|vecb xx vecc + vecc xx veca + veca xx vecb|` ......(ii)
From (i) and (ii),
CM = `(|vecb xx vecc + vecc xx veca + veca xx vecb|)/(|vecb - veca|)`
shaalaa.com
Is there an error in this question or solution?